Terahertz nanoscopy: Advances, challenges, and the road ahead

Author:

Guo Xiao1ORCID,Bertling Karl1ORCID,Donose Bogdan C.1ORCID,Brünig Michael1ORCID,Cernescu Adrian2ORCID,Govyadinov Alexander A.2ORCID,Rakić Aleksandar D.1ORCID

Affiliation:

1. School of Electrical Engineering and Computer Science, The University of Queensland 1 , Brisbane, QLD 4072, Australia

2. Attocube systems AG (neaspec) 2 , Eglfinger Weg 2, 85540 Haar (München), Germany

Abstract

Exploring nanoscale material properties through light-matter interactions is essential to unveil new phenomena and manipulate materials at the atomic level, paving the way for ground-breaking advancements in nanotechnology and materials science. Various elementary excitations and low-energy modes of materials reside in the terahertz (THz) range of the electromagnetic spectrum (0.1–10 THz) and occur over various spatial and temporal scales. However, due to the diffraction limit, a slew of THz studies are restricted to drawing conclusions from the spatially varying THz responses around half of the probing wavelengths, i.e., from tens to a couple of hundred micrometers. To address this fundamental challenge, scanning near-field optical microscopy (SNOM), notably scattering-type SNOM (s-SNOM), combined with THz sources has been employed and is fueling growing interest in this technique across multiple disciplines. This review (1) provides an overview of the system developments of SNOM, (2) evaluates current approaches to understand and quantify light-matter interactions, (3) explores advances in THz SNOM applications, especially studies with THz nano-scale spatial responses employing an s-SNOM, and (4) envisions future challenges and potential development avenues for the practical use of THz s-SNOM.

Funder

Australian Research Council

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3