Induced giant piezoelectricity in centrosymmetric oxides

Author:

Park D.-S.12ORCID,Hadad M.2,Riemer L. M.1ORCID,Ignatans R.3ORCID,Spirito D.4,Esposito V.5ORCID,Tileli V.3ORCID,Gauquelin N.67ORCID,Chezganov D.67ORCID,Jannis D.67ORCID,Verbeeck J.67,Gorfman S.4ORCID,Pryds N.5ORCID,Muralt P.2ORCID,Damjanovic D.1ORCID

Affiliation:

1. Group for Ferroelectrics and Functional Oxides, Swiss Federal Institute of Technology–EPFL, 1015 Lausanne, Switzerland.

2. Group for Electroceramic Thin Films, Swiss Federal Institute of Technology–EPFL, 1015 Lausanne, Switzerland.

3. Institute of Materials, Swiss Federal Institute of Technology–EPFL, 1015 Lausanne, Switzerland.

4. Department of Materials Science and Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel.

5. Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej, 2800 Kongens Lyngby, Denmark.

6. Electron Microscopy for Materials Science (EMAT), University of Antwerp, B-2020 Antwerpen, Belgium.

7. NANOlab Center of Excellence, University of Antwerp, 2020 Antwerp, Belgium.

Abstract

Piezoelectrics are materials that linearly deform in response to an applied electric field. As a fundamental prerequisite, piezoelectric materials must have a noncentrosymmetric crystal structure. For more than a century, this has remained a major obstacle for finding piezoelectric materials. We circumvented this limitation by breaking the crystallographic symmetry and inducing large and sustainable piezoelectric effects in centrosymmetric materials by the electric field–induced rearrangement of oxygen vacancies. Our results show the generation of extraordinarily large piezoelectric responses [with piezoelectric strain coefficients ( d 33 ) of ~200,000 picometers per volt at millihertz frequencies] in cubic fluorite gadolinium-doped CeO 2− x films, which are two orders of magnitude larger than the responses observed in the presently best-known lead-based piezoelectric relaxor–ferroelectric oxide at kilohertz frequencies. These findings provide opportunities to design piezoelectric materials from environmentally friendly centrosymmetric ones.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3