Symmetry

Author:

Newnham Robert E.

Abstract

All single crystals possess translational symmetry, and most possess other symmetry elements as well. In this chapter we describe the 32 crystallographic point groups used for single crystals. The seven Curie groups used for textured polycrystalline materials are enumerated in the next chapter. We live in a three-dimensional world which means that there are basically four kinds of geometric symmetry operations relating one part of this world to another. The four primary types of symmetry are translation, rotation, reflection, and inversion. As pictured in Fig. 3.1, these symmetry operators operate on a point with coordinates Z1, Z2, Z3 and carry it to a new position. By definition, all crystals have a unit cell that is repeated many times in space, a point Z1, Z2, Z3 is repeated over and over again as one unit cell is translated to the next. A mirror plane perpendicular to one of the principal axes is a two-dimensional symmetry element that reverses the sign of one coordinate. Rotation axes are one-dimensional symmetry elements that change two coordinates, while an inversion center is a zero-dimensional point that changes all three coordinates. In developing an understanding of the macroscopic properties of crystals, we recognize that the scale of physical property measurements is much larger than the unit cell dimensions. It is for this reason that we are not concerned about translational symmetry and work with the 32 point group symmetries rather than the 230 space groups. This greatly simplifies the structure–property relationships in crystal physics. Aside from the identity operator 1, there are only four types of rotational symmetry consistent with the translation symmetry common to all crystals. Fig. 3.2 shows why. Parallelograms, equilateral triangles, squares, and hexagons will pack together to fill space but, pentagons symmetry axes are found in crystals. This is the starting point for generating the 32 crystal classes. When taken in combination with mirror planes and inversion centers, these four types of rotation axes are capable of forming 32 self-consistent three-dimensional symmetry patterns around a point. These are the so-called 32 crystal classes or crystallographic point groups.

Publisher

Oxford University Press

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3