Delocalized photonic deep learning on the internet’s edge

Author:

Sludds Alexander1ORCID,Bandyopadhyay Saumil1ORCID,Chen Zaijun1ORCID,Zhong Zhizhen2ORCID,Cochrane Jared13ORCID,Bernstein Liane1ORCID,Bunandar Darius1ORCID,Dixon P. Ben3ORCID,Hamilton Scott A.3ORCID,Streshinsky Matthew4,Novack Ari4,Baehr-Jones Tom4,Hochberg Michael4,Ghobadi Manya2,Hamerly Ryan15ORCID,Englund Dirk1ORCID

Affiliation:

1. Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

2. Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

3. Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA 02421, USA.

4. Nokia Corporation, New York, NY 10016, USA.

5. Physics and Informatics Laboratories, NTT Research Inc., Sunnyvale, CA 94085, USA.

Abstract

Advanced machine learning models are currently impossible to run on edge devices such as smart sensors and unmanned aerial vehicles owing to constraints on power, processing, and memory. We introduce an approach to machine learning inference based on delocalized analog processing across networks. In this approach, named Netcast, cloud-based “smart transceivers” stream weight data to edge devices, enabling ultraefficient photonic inference. We demonstrate image recognition at ultralow optical energy of 40 attojoules per multiply (<1 photon per multiply) at 98.8% (93%) classification accuracy. We reproduce this performance in a Boston-area field trial over 86 kilometers of deployed optical fiber, wavelength multiplexed over 3 terahertz of optical bandwidth. Netcast allows milliwatt-class edge devices with minimal memory and processing to compute at teraFLOPS rates reserved for high-power (>100 watts) cloud computers.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Reference88 articles.

1. T. B. Brown B. Mann N. Ryder M. Subbiah J. Kaplan P. Dhariwal A. Neelakantan P. Shyam G. Sastry A. Askell S. Agarwal A. Herbert-Voss G. Krueger T. Henighan R. Child A. Ramesh D. M. Ziegler J. Wu C. Winter C. Hesse M. Chen E. Sigler M. Litwin S. Gray B. Chess J. Clark C. Berner S. McCandlish A. Radford I. Sutskever D. Amodei Language models are few-shot learners. arXiv:2005.14165 [cs.CL] (2020).

2. Grandmaster level in StarCraft II using multi-agent reinforcement learning

3. ImageNet classification with deep convolutional neural networks;Krizhevsky A.;Adv. Neural Inf. Process. Syst.,2012

4. J. Deng W. Dong R. Socher L. -J. Li K. Li L. Fei-Fei “ImageNet: A large-scale hierarchical image database ” 2009 IEEE Conference on Computer Vision and Pattern Recognition (IEEE 2009) pp. 248–255.

5. Efficient Processing of Deep Neural Networks: A Tutorial and Survey

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3