Silicon integrated photonic-electronic neuron for noise-resilient deep learning

Author:

Roumpos Ioannis1ORCID,De Marinis Lorenzo2ORCID,Kovaios Stefanos1,Kincaid Peter Seigo2ORCID,Paolini Emilio2,Tsakyridis Apostolos1,Moralis-Pegios Miltiadis1ORCID,Berciano Mathias3,Ferraro Filippo3,Bode Dieter3,Srinivasan Srinivasan Ashwyn34,Pantouvaki Marianna35,Andriolli Nicola6ORCID,Contestabile Giampiero2,Pleros Nikos1,Vyrsokinos Konstantinos1

Affiliation:

1. Aristotle University of Thessaloniki

2. Scuola Superiore Sant’Anna

3. Imec

4. Lightmatter Inc.

5. Microsoft Research Center

6. University of Pisa

Abstract

This paper presents an experimental demonstration of the photonic segment of a photonic-electronic multiply accumulate neuron (PEMAN) architecture, employing a silicon photonic chip with high-speed electro-absorption modulators for matrix-vector multiplications. The photonic integrated circuit has been evaluated through a noise-sensitive three-layer neural network (NN) with 1350 trainable parameters targeting heartbeat sound classification for health monitoring purposes. Its experimental validation revealed F1-scores of 85.9% and 81% at compute rates of 10 and 20 Gbaud, respectively, exploiting quantization- and noise-aware deep learning techniques and introducing a novel activation function slope stretching strategy for mitigating noise impairments. The enhanced noise-resilient properties of this novel training model are confirmed via simulations for varying noise levels, being in excellent agreement with the respective experimental data obtained at 10, 20, and 30 Gbaud symbol rates.

Funder

HORIZON EUROPE Digital, Industry and Space

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3