Oxygen fugacities of extrasolar rocks: Evidence for an Earth-like geochemistry of exoplanets

Author:

Doyle Alexandra E.1ORCID,Young Edward D.1ORCID,Klein Beth2ORCID,Zuckerman Ben2,Schlichting Hilke E.123ORCID

Affiliation:

1. Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, Los Angeles, CA, USA.

2. Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, CA, USA.

3. Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.

Abstract

Peering inside extrasolar rocky bodies The oxygen fugacity of a rock, f O 2 , is a measure of how oxidizing or reducing its surroundings were when the rock formed. Different minerals form at different f O 2 and have different physical properties, so the internal structure of an exoplanet depends on this value. Doyle et al. exploited the signature left behind when rocky bodies impact a white dwarf—the remnant of a dead star. By examining the rock-forming elements left on the surface of each white dwarf, they determine f O 2 in the impacting body. Six systems all had similar f O 2 to bodies in the Solar System, consistent with the idea that rocky exoplanets often have internal properties similar to those of Earth and Mars. Science , this issue p. 356

Funder

National Aeronautics and Space Administration

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 91 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Structural prediction of Fe-Mg-O compounds at super-Earth's pressures;Physical Review Materials;2023-11-06

2. Post-main sequence thermal evolution of planetesimals;Monthly Notices of the Royal Astronomical Society;2023-10-12

3. Planetesimals at DZ stars – I. Chondritic compositions and a massive accretion event;Monthly Notices of the Royal Astronomical Society;2023-09-22

4. Induction heating of planetary interiors in white dwarf systems;Astronomy & Astrophysics;2023-09

5. A mineralogical reason why all exoplanets cannot be equally oxidizing;Monthly Notices of the Royal Astronomical Society;2023-08-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3