Sculpting the valley in the radius distribution of small exoplanets as a by-product of planet formation: the core-powered mass-loss mechanism

Author:

Gupta Akash1ORCID,Schlichting Hilke E12

Affiliation:

1. Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA 90095, USA

2. Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Abstract

ABSTRACT Recent observations revealed a bimodal radius distribution of small, short-period exoplanets with a paucity in their occurrence, a radius ‘valley’, around 1.5–2.0 R⊕. In this work, we investigate the effect of a planet’s own cooling luminosity on its thermal evolution and atmospheric mass loss (core-powered mass-loss) and determine its observational consequences for the radius distribution of small, close-in exoplanets. Using simple analytical descriptions and numerical simulations, we demonstrate that planetary evolution based on the core-powered mass-loss mechanism alone (i.e. without any photoevaporation) can produce the observed valley in the radius distribution. Our results match the valley’s location, shape and slope in planet radius–orbital period parameter space, and the relative magnitudes of the planet occurrence rate above and below the valley. We find that the slope of the valley is, to first order, dictated by the atmospheric mass-loss time-scale at the Bondi radius and given by d logRp/d logP ≃ 1/(3(1 − β)) that evaluates to −0.11 for β ≃ 4, where Mc/M⊕ = (Rc/R⊕)β(ρc∗/ρ⊕)β/3 is the mass–radius relation of the core. This choice for β yields good agreement with observations and attests to the significance of internal compression for massive planetary cores. We further find that the location of the valley scales as $\rho _{\rm c*}^{-4/9}$ and that the observed planet population must have predominantly rocky cores with typical water–ice fractions of less than ${\sim } 20{{\, \rm per\, cent}}$. Furthermore, we show that the relative magnitude of the planet occurrence rate above and below the valley is sensitive to the details of the planet-mass distribution but that the location of the valley is not.

Funder

National Aeronautics and Space Administration

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3