Abstract
Abstract
Small, close-in exoplanets are divided into two subpopulations: super-Earths and sub-Neptunes. Most super-Earths are thought to have lost their primordially accreted hydrogen-dominated atmospheres via thermally driven winds. We consider the global chemical equilibrium of super-Earths and the lasting impacts of their fleeting hydrogen atmospheres. We find that hydrogen is efficiently sequestered into the interior, oxidizing iron and endogenously producing ∼0.5%–1.0% water by mass. As the atmospheres of super-Earths are continuously sculpted by mass loss and chemical equilibration, they remain hydrogen-dominated by mole (number) fraction but become steam-dominated by mass, which may be observable with JWST for planets transitioning across the radius valley. One of the main effects of efficient sequestration of hydrogen into the interior is to produce an underdense bulk interior compared to that of Earth. We predict bulk densities of super-Earths to be ∼5.0 g cm−3 for a 1M
⊕ planet, which is consistent with high-precision mass measurements and also population-level inference analyses from atmospheric escape models.
Funder
Alfred P. Sloan Foundation
NASA ∣ National Aeronautics and Space Administration Postdoctoral Program
Publisher
American Astronomical Society