Fusion of memristor and digital compute-in-memory processing for energy-efficient edge computing

Author:

Wen Tai-Hao12ORCID,Hung Je-Min2,Huang Wei-Hsing2ORCID,Jhang Chuan-Jia12ORCID,Lo Yun-Chen2ORCID,Hsu Hung-Hsi2ORCID,Ke Zhao-En2,Chen Yu-Chiao2ORCID,Chin Yu-Hsiang2,Su Chin-I1,Khwa Win-San1ORCID,Lo Chung-Chuan3ORCID,Liu Ren-Shuo2,Hsieh Chih-Cheng2,Tang Kea-Tiong2,Ho Mon-Shu4ORCID,Chou Chung-Cheng1ORCID,Chih Yu-Der1,Chang Tsung-Yung Jonathan1,Chang Meng-Fan12ORCID

Affiliation:

1. Taiwan Semiconductor Manufacturing Company Limited (TSMC), No. 8, Li-Hsin Rd. 6, Hsinchu Science Park, Hsinchu 300, Taiwan, R.O.C.

2. Department of Electrical Engineering, National Tsing Hua University (NTHU), No. 101, Sec. 2, Guangfu Rd., East Dist., Hsinchu City, Hsinchu 300, Taiwan, R.O.C.

3. Department of Life Science, National Tsing Hua University (NTHU), No. 101, Sec. 2, Guangfu Rd., East Dist., Hsinchu City, Hsinchu 300, Taiwan, R.O.C.

4. Department of Physics, National Chung Hsing University (NCHU), No. 145, Xingda Rd., South Dist., Taichung City 402, Taiwan, R.O.C.

Abstract

Artificial intelligence (AI) edge devices prefer employing high-capacity nonvolatile compute-in-memory (CIM) to achieve high energy efficiency and rapid wakeup-to-response with sufficient accuracy. Most previous works are based on either memristor-based CIMs, which suffer from accuracy loss and do not support training as a result of limited endurance, or digital static random-access memory (SRAM)–based CIMs, which suffer from large area requirements and volatile storage. We report an AI edge processor that uses a memristor-SRAM CIM-fusion scheme to simultaneously exploit the high accuracy of the digital SRAM CIM and the high energy-efficiency and storage density of the resistive random-access memory memristor CIM. This also enables adaptive local training to accommodate personalized characterization and user environment. The fusion processor achieved high CIM capacity, short wakeup-to-response latency (392 microseconds), high peak energy efficiency (77.64 teraoperations per second per watt), and robust accuracy (<0.5% accuracy loss). This work demonstrates that memristor technology has moved beyond in-lab development stages and now has manufacturability for AI edge processors.

Publisher

American Association for the Advancement of Science (AAAS)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3