In vivo gene editing in dystrophic mouse muscle and muscle stem cells

Author:

Tabebordbar Mohammadsharif12,Zhu Kexian13,Cheng Jason K. W.1,Chew Wei Leong24,Widrick Jeffrey J.5,Yan Winston X.67,Maesner Claire1,Wu Elizabeth Y.1,Xiao Ru8,Ran F. Ann67,Cong Le67,Zhang Feng67,Vandenberghe Luk H.8,Church George M.4,Wagers Amy J.1

Affiliation:

1. Department of Stem Cell and Regenerative Biology, Harvard University, and Harvard Stem Cell Institute, Cambridge, MA 02138, USA.

2. Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA 02115, USA.

3. Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.

4. Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.

5. Division of Genetics and Program in Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA.

6. Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.

7. McGovern Institute for Brain Research, Department of Brain and Cognitive Science, and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

8. Grousbeck Gene Therapy Center, Schepens Eye Research Institute, and Massachusetts Eye and Ear Infirmary, 20 Staniford Street, Boston, MA 02114, USA.

Abstract

Editing can help build stronger muscles Much of the controversy surrounding the gene-editing technology called CRISPR/Cas9 centers on the ethics of germline editing of human embryos to correct disease-causing mutations. For certain disorders such as muscular dystrophy, it may be possible to achieve therapeutic benefit by editing the faulty gene in somatic cells. In proof-of-concept studies, Long et al. , Nelson et al. , and Tabebordbar et al. used adeno-associated virus-9 to deliver the CRISPR/Cas9 gene-editing system to young mice with a mutation in the gene coding for dystrophin, a muscle protein deficient in patients with Duchenne muscular dystrophy. Gene editing partially restored dystrophin protein expression in skeletal and cardiac muscle and improved skeletal muscle function. Science , this issue p. 400 , p. 403 , p. 407

Funder

Howard Hughes Medical Institute

National Institute of General Medical Sciences (NIGMS)

NIH

New York Stem Cell Foundation

National Institute of Mental Health

National Institute of Diabetes and Digestive and Kidney Diseases

NSF

Keck

New York Stem Cell

Damon Runyon

Searle Scholars

Merkin

Vallee Foundation

B. Metcalfe

Agency for Science, Technology, and Research (A*STAR), Singapore

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3