Mathematical and Computational Challenges in Population Biology and Ecosystems Science

Author:

Levin Simon A.1,Grenfell Bryan2,Hastings Alan3,Perelson Alan S.4

Affiliation:

1. S. A. Levin is in the Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA.

2. B. Grenfell is in the Zoology Department, Cambridge University, Downing Street, Cambridge CB2 3EJ, UK.

3. A. Hastings is in the Division of Environmental Studies, Institute for Theoretical Dynamics, and Center for Population Biology, University of California, Davis, CA 95616, USA.

4. A. S. Perelson is at Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.

Abstract

Mathematical and computational approaches provide powerful tools in the study of problems in population biology and ecosystems science. The subject has a rich history intertwined with the development of statistics and dynamical systems theory, but recent analytical advances, coupled with the enhanced potential of high-speed computation, have opened up new vistas and presented new challenges. Key challenges involve ways to deal with the collective dynamics of heterogeneous ensembles of individuals, and to scale from small spatial regions to large ones. The central issues—understanding how detail at one scale makes its signature felt at other scales, and how to relate phenomena across scales—cut across scientific disciplines and go to the heart of algorithmic development of approaches to high-speed computation. Examples are given from ecology, genetics, epidemiology, and immunology.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Reference172 articles.

1. Levin S. A., Ed., Mathematics and Biology: The Interface (Lawrence Berkeley Laboratory, University of California, Berkeley, CA, 1992).

2. Murray J. D., Mathematical Biology, vol. 19 of Biomathematics (Springer-Verlag, Heidelberg, 1990); P. J. Hilts, “Eric Steven Lander: Love of Numbers Leads to Chromosome 17,” New York Times, 10 September 1996, p. C1.

3. Biological Populations with Nonoverlapping Generations: Stable Points, Stable Cycles, and Chaos

4. Roughgarden J., May R. M., Levin S. A., Eds., Perspectives in Ecological Theory (Princeton Univ. Press, Princeton, NJ, 1989).

5. Kollman P., Ed. Modeling of Biological Systems: A Workshop at the National Science Foundation (University of California, San Francisco, 14 and 15 March 1996)(technical report).

Cited by 307 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Novel competitive fractional chaotic circuits interaction networks with hierarchical structure and encryption application;Physica Scripta;2024-05-03

2. Validity of Markovian modeling for transient memory-dependent epidemic dynamics;Communications Physics;2024-03-08

3. Synchronization patterns in heterogeneous ensembles of coupled pendula;Indian Journal of Physics;2023-09-27

4. Hermaphroditic origins of anisogamy;Philosophical Transactions of the Royal Society B: Biological Sciences;2023-03-20

5. A hybrid epidemiological model based on individual dynamics;Journal of Algorithms & Computational Technology;2023-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3