Novel competitive fractional chaotic circuits interaction networks with hierarchical structure and encryption application

Author:

El-Mesady AORCID,Elsonbaty Amr,El-Shafai WalidORCID,Kamal F M

Abstract

Abstract In the realm of complex networks, the challenge of ensuring secure communication amidst the vulnerabilities of conventional encryption methods has become increasingly critical. This study delves into the complex realm of synchronized behaviors in networks, employing fractional-order chaotic circuits within hierarchically structured competitive interaction networks to enhance encryption security, particularly for medical image transmission. We propose a novel paradigm that transcends traditional synchronization methods used across various disciplines, from engineering to social sciences, by unveiling the intricate dynamics of how units within networks share interactions. Our approach leverages the unique properties of fractional chaos and network hierarchy, demonstrating that the proposed model, characterized by multi-directed links and competitive strategies, significantly improves synchronization. Through detailed analysis, including bifurcation diagrams and Lyapunov exponent plots, we uncover the optimal configurations of coupling strength and fractional order that lead to enhanced network synchronization. This synchronization is pivotal for our encryption application, showcasing a high level of security and privacy in the transmission of medical images. The encryption technique benefits from the network’s complex and synchronized dynamics, rendering it a formidable challenge for potential attackers to decipher the encrypted data. While our findings offer a promising mechanism for creating robust communication networks capable of securing sensitive medical data, the implications of our work extend beyond this application. The successful application of fractional-order chaotic circuits sets a groundwork for securing diverse types of data transmissions against the evolving landscape of cyber threats. This research not only marks a significant advancement in network security but also opens new avenues for applying these principles across a spectrum of fields where data security and privacy are paramount.

Publisher

IOP Publishing

Reference65 articles.

1. Statistical mechanics of complex networks;Albert;Reviews of modern physics,2002

2. Cascade control and defense in complex networks;Motter;Physical Review Letters,2004

3. Epidemic spreading in scale-free networks;Pastor-Satorras;Physical review letters,2001

4. Synchronization and emergence in complex systems;Atay;Pramana,2011

5. Complex networks: topology, dynamics and synchronization;Wang;Int. J. Bifurc. Chaos.,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3