Identifying domain-general and domain-specific predictors of low mathematics performance: A classification and regression tree analysis

Author:

Purpura David J.,Day Elizabeth,Napoli Amy R.,Hart Sara A.

Abstract

Many children struggle to successfully acquire early mathematics skills. Theoretical and empirical evidence has pointed to deficits in domain-specific skills (e.g., non-symbolic mathematics skills) or domain-general skills (e.g., executive functioning and language) as underlying low mathematical performance. In the current study, we assessed a sample of 113 three- to five-year old preschool children on a battery of domain-specific and domain-general factors in the fall and spring of their preschool year to identify Time 1 (fall) factors associated with low performance in mathematics knowledge at Time 2 (spring). We used the exploratory approach of classification and regression tree analyses, a strategy that uses step-wise partitioning to create subgroups from a larger sample using multiple predictors, to identify the factors that were the strongest classifiers of low performance for younger and older preschool children. Results indicated that the most consistent classifier of low mathematics performance at Time 2 was children’s Time 1 mathematical language skills. Further, other distinct classifiers of low performance emerged for younger and older children. These findings suggest that risk classification for low mathematics performance may differ depending on children’s age.

Publisher

Leibniz Institute for Psychology (ZPID)

Subject

Applied Mathematics,Experimental and Cognitive Psychology,Numerical Analysis

Reference105 articles.

1. Adelman, C. (1999). Answers in the toolbox: Academic intensity, attendance patterns and bachelor’s degree attainment. Washington, DC, USA: Department of Education.

2. Relations between inhibitory control and the development of academic skills in preschool and kindergarten: A meta-analysis.

3. Alloway, T. P. (2007). Automated Working Memory Assessment. London, United Kingdom: Harcourt Assessment.

4. Verbal and Visuospatial Short-Term and Working Memory in Children: Are They Separable?

5. Number magnitude processing and basic cognitive functions in children with mathematical learning disabilities

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3