Fish oil-containing edible films with active film incorporated with extract of Psidium guajava leaves: preparation and characterization of double-layered edible film

Author:

Sukoco AjiORCID,Yamamoto Yukihiro,Harada Hiroyuki,Hashimoto Atsushi,Yoshino Tomoyuki

Abstract

Background The utilization of zein and gum arabic has grown in an attempt to formulate wall materials based on protein–polysaccharide complexes. This mixture provides a versatile shelter for hydrophilic (guava leaf extract, GLE) or lipophilic (fish oil, FO) bioactive compounds from unwanted environmental factors, and it can be used as an edible film-forming polymer. This study was undertaken to characterize FO-containing edible films that were double-layered with a film containing GLE. Methods Modified zein and gum arabic solutions (MG complex) were mixed at a ratio of 1:1.5 (v/v), adjusted to pH 5, added with glycerol (20% of the complex) and FO (5% of the complex), and finally adjusted to pH 5. This was prepared as the bottom/lower layer. The upper/active layer was prepared by mixing MG complex, glycerol, and GLE (1, 3, and 5% w/v of the complex). Physical, mechanical, microstructural, thermal, microbiological, and oxidative measurements were also performed. Results The total phenolic and flavonoid contents in GLE were 15.81 mg GAE/g extract and 6.99 mg QE/g extract, respectively. The IC50 of the DPPH radical scavenging activity of GLE was 26.86 ppm with antibacterial activity against Bacillus subtilis and Escherichia coli of 9.83 and 12.55 mm. The total plate counts of films double-layered with a film containing GLE were retained below 3 log CFU/g during 28-day storage. The peroxide values of these films were dimmed for no more than 9.08 meq/kg sample on day 28 of storage. Thickness (872.00-971.67 μm), water vapor transmission rate (12.99-17.04 g/m2/day), tensile strength (1.56-2.02 kPa), elongation at break (61.53-75.41%), glass transition (52.74-57.50°C), melting peak (131.59-142.35°C), inhibition against B. subtilis (33.67-40.58 mm), and inhibition against E. coli (2.05-9.04 mm) were obtained by double-layer films. Conclusions GLE can be successfully incorporated into the active layer of a double-layer film to improve its characteristics while significantly slowing down the microbial contamination and oxidation rate.

Funder

Ministry of Education, Culture, Sports, Science, and Technology, Japan

Prefectural University of Hiroshima, Japan

Publisher

F1000 Research Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3