Fluoxetine pharmacokinetics and tissue distribution quantitatively supports a therapeutic role in COVID-19 at a minimum dose of 20 mg per day

Author:

Eugene Andy R.ORCID

Abstract

Background.  Various in vitro studies have shown fluoxetine inhibits multiple variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogen causing the coronavirus disease 2019 (COVID-19) worldwide pandemic and multiple observational clinical studies have shown that patients receiving fluoxetine experienced clinical benefit by lowering the risk of intubation and death. The aim of this study is to conduct population pharmacokinetic dosing simulations to quantify the percentage of patients achieving a trough level for the effective concentration resulting in 50% (EC50) and 90% (EC90) inhibition of SARS-CoV-2 as reported in Calu-3 human lung cells. Methods.  Pharmacometric parameter estimates used in this study were obtained from the U.S. FDA website from a new drug application for fluoxetine hydrochloride. A population of 1,000 individuals were simulated at standard fluoxetine antidepressant doses (20 mg/day, 30 mg/day, 40 mg/day, 50 mg/day, and 60 mg/day) to estimate the percentage of the patients achieving a trough plasma level for the EC50 and EC90 SARS-CoV-2 inhibition. All analyses were conducted in R. Results.  By day-10 at 20 mg/day, 93.2% and 47% of the population will achieve the trough target plasma EC50 and EC90 concentrations, respectively, which translates to a lung tissue distribution coefficient of 60-times higher EC50 (283.6 ng/ml [0.82 mM]) and EC90 (1390.1 ng/ml [4.02 mM]). Further, by day-10 at an ideal dose of 40 mg/day, 99% and 93% of patients will reach the trough EC50 and EC90 concentrations, respectfully. Lastly, only a dose of 60 mg/day will reach the SARS-CoV-2 EC90 inhibitory concentration in the brain at pharmacokinetic steady-state. Conclusion. Overall, with a minimum treatment period of 10-days and a minimum dose of 20 mg/day, this study corroborates in vitro studies reporting fluoxetine inhibiting SARS-CoV-2 titers and also multiple observational clinical studies showing therapeutic benefit of fluoxetine in COVID-19 patients.

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3