Repurposing of Doxycycline to Hinder the Viral Replication of SARS-CoV-2: From in silico to in vitro Validation

Author:

Alexpandi Rajaiah,Gendrot Mathieu,Abirami Gurusamy,Delandre Océane,Fonta Isabelle,Mosnier Joel,Mariadasse Richard,Jeyakanthan Jeyaraman,Pandian Shunmugiah Karutha,Pradines Bruno,Ravi Arumugam Veera

Abstract

Since the rapid spread of coronavirus disease (COVID-19) became a global pandemic, healthcare ministries around the world have recommended specific control methods such as quarantining infected peoples, identifying infections, wearing mask, and practicing hand hygiene. Since no effective treatment for COVID-19 has yet been discovered, a variety of drugs approved by Food and Drug Administration (FDA) have been suggested for repurposing strategy. In the current study, we predicted that doxycycline could interact with the nucleotide triphosphate (NTP) entry channel, and is therefore expected to hinder the viral replication of SARS-CoV-2 RNA-dependent RNA-polymerase (RdRp) through docking analysis. Further, the molecular dynamics results revealed that the RdRp-Doxycycline complex was structurally relatively stable during the dynamic period (100 ns), and its complex maintained close contact with their active catalytic domains of SARS-CoV-2 RdRp. The molecular mechanics Poisson–Boltzmann surface area (MM-PBSA) calculation of binding free energy also showed that the doxycycline has worthy affinities with SARS-CoV-2 RdRp. As expected, doxycycline effectively inhibited the viral replication of IHU strains of SARS-CoV-2 (IHUMI-3 and IHUMI-6), identified from the hospitalized patients in IHU Méditerranée Infection (IHUMI), Marseille, France. Moreover, doxycycline inhibited the viral load in vitro at both on-entry and after viral entry of IHU variants of SARS-CoV-2. The results suggest that doxycycline exhibits strains-dependant antiviral activity against COVID-19. As a result, the current study concludes that doxycycline may be more effective in combination with other drugs for better COVID-19 treatment efficacy.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3