In silico prediction of structure and function for a large family of transmembrane proteins that includes human Tmem41b

Author:

Mesdaghi Shahram,Murphy David L.,Sánchez Rodríguez FilomenoORCID,Burgos-Mármol J. JavierORCID,Rigden Daniel J.

Abstract

Background: Recent strides in computational structural biology have opened up an opportunity to understand previously uncharacterised proteins.  The under-representation of transmembrane proteins in the Protein Data Bank highlights the need to apply new and advanced bioinformatics methods to shed light on their structure and function.  This study focuses on a family of transmembrane proteins containing the Pfam domain PF09335 ('SNARE_ASSOC'/ ‘VTT ‘/’Tvp38’/'DedA'). One prominent member, Tmem41b, has been shown to be involved in early stages of autophagosome formation and is vital in mouse embryonic development as well as being identified as a viral host factor of SARS-CoV-2. Methods: We used evolutionary covariance-derived information to construct and validate ab initio models, make domain boundary predictions and infer local structural features.  Results: The results from the structural bioinformatics analysis of Tmem41b and its homologues showed that they contain a tandem repeat that is clearly visible in evolutionary covariance data but much less so by sequence analysis.  Furthermore, cross-referencing of other prediction data with covariance analysis showed that the internal repeat features two-fold rotational symmetry.  Ab initio modelling of Tmem41b and homologues reinforces these structural predictions.  Local structural features predicted to be present in Tmem41b were also present in Cl-/H+ antiporters.  Conclusions: The results of this study strongly point to Tmem41b and its homologues being transporters for an as-yet uncharacterised substrate and possibly using H+ antiporter activity as its mechanism for transport.

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3