Sustainable data analysis with Snakemake

Author:

Mölder FelixORCID,Jablonski Kim PhilippORCID,Letcher BriceORCID,Hall Michael B.ORCID,Tomkins-Tinch Christopher H.ORCID,Sochat VanessaORCID,Forster Jan,Lee SoohyunORCID,Twardziok Sven O.,Kanitz AlexanderORCID,Wilm Andreas,Holtgrewe Manuel,Rahmann Sven,Nahnsen Sven,Köster JohannesORCID

Abstract

Data analysis often entails a multitude of heterogeneous steps, from the application of various command line tools to the usage of scripting languages like R or Python for the generation of plots and tables. It is widely recognized that data analyses should ideally be conducted in a reproducible way. Reproducibility enables technical validation and regeneration of results on the original or even new data. However, reproducibility alone is by no means sufficient to deliver an analysis that is of lasting impact (i.e., sustainable) for the field, or even just one research group. We postulate that it is equally important to ensure adaptability and transparency. The former describes the ability to modify the analysis to answer extended or slightly different research questions. The latter describes the ability to understand the analysis in order to judge whether it is not only technically, but methodologically valid. Here, we analyze the properties needed for a data analysis to become reproducible, adaptable, and transparent. We show how the popular workflow management system Snakemake can be used to guarantee this, and how it enables an ergonomic, combined, unified representation of all steps involved in data analysis, ranging from raw data processing, to quality control and fine-grained, interactive exploration and plotting of final results.

Funder

Deutsche Stiftung für Herzforschung

Netherlands Organisation for Scientific Research

Google LLC

United States National Science Foundation Graduate Research Fellowship Program

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference38 articles.

1. 1,500 scientists lift the lid on reproducibility.;M Baker;Nature.,2016

2. Computer science. Accessible reproducible research.;J Mesirov;Science.,2010

3. A manifesto for reproducible science.;M Munafò;Nat Hum Behav.,2017

4. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update.;E Afgan;Nucleic Acids Res.,2018

5. KNIME: The Konstanz Information Miner.;M Berthold,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3