NCBench: providing an open, reproducible, transparent, adaptable, and continuous benchmark approach for DNA-sequencing-based variant calling

Author:

Hanssen Friederike,Gabernet Gisela,Bäuerle Famke,Stöcker Bianca,Wiegand Felix,Smith Nicholas H.ORCID,Mertes Christian,Neogi Avirup Guha,Brandhoff Leon,Ossowski Anna,Altmueller Janine,Becker Kerstin,Petzold Andreas,Sturm Marc,Stöcker Tyll,Sivalingam Sugirthan,Brand Fabian,Schmidt Axel,Buness Andreas,Probst Alexander J.,Motameny SusanneORCID,Köster JohannesORCID

Abstract

We present the results of the human genomic small variant calling benchmarking initiative of the German Research Foundation (DFG) funded Next Generation Sequencing Competence Network (NGS-CN) and the German Human Genome-Phenome Archive (GHGA). In this effort, we developed NCBench, a continuous benchmarking platform for the evaluation of small genomic variant callsets in terms of recall, precision, and false positive/negative error patterns. NCBench is implemented as a continuously re-evaluated open-source repository. We show that it is possible to entirely rely on public free infrastructure (Github, Github Actions, Zenodo) in combination with established open-source tools. NCBench is agnostic of the used dataset and can evaluate an arbitrary number of given callsets, while reporting the results in a visual and interactive way. We used NCBench to evaluate over 40 callsets generated by various variant calling pipelines available in the participating groups that were run on three exome datasets from different enrichment kits and at different coverages. While all pipelines achieve high overall quality, subtle systematic differences between callers and datasets exist and are made apparent by NCBench.These insights are useful to improve existing pipelines and develop new workflows. NCBench is meant to be open for the contribution of any given callset. Most importantly, for authors, it will enable the omission of repeated re-implementation of paper-specific variant calling benchmarks for the publication of new tools or pipelines, while readers will benefit from being able to (continuously) observe the performance of tools and pipelines at the time of reading instead of at the time of writing.

Funder

Deutsche Forschungsgemeinschaft

Publisher

F1000 Research Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3