Machine Learning Inspired Nanowire Classification Method based on Nanowire Array Scanning Electron Microscope Images

Author:

Brugnolotto Enrico,Aleksandrov Preslav,Sousa Marilyne,Georgiev ViharORCID

Abstract

Background This article introduces an innovative classification methodology to identify nanowires within scanning electron microscope images. Methods Our approach employs advanced image manipulation techniques in conjunction with machine learning-based recognition algorithms. The effectiveness of our proposed method is demonstrated through its application to the categorization of scanning electron microscopy images depicting nanowires arrays. Results The method’s capability to isolate and distinguish individual nanowires within an array is the primary factor in the observed accuracy. The foundational data set for model training comprises scanning electron microscopy images featuring 240 III-V nanowire arrays grown with metal organic chemical vapor deposition on silicon substrates. Each of these arrays consists of 66 nanowires. The results underscore the model’s proficiency in discerning distinct wire configurations and detecting parasitic crystals. Our approach yields an average F1 score of 0.91, indicating high precision and recall. Conclusions Such a high level of performance and accuracy of ML methods demonstrate the viability of our technique not only for academic but also for practical commercial implementation and usage.

Funder

Horizon 2020 Framework Programme

Publisher

F1000 Research Ltd

Reference38 articles.

1. Study of AlGaN/GaN High-Electron-Mobility Transistors on Si Substrate with Thick Copper-Metallized Interconnects for Ka-Band Applications.;M Lee;physica status solidi (a).,2023

2. Impact of Wire Geometry on Interconnect RC and Circuit Delay.;I Ciofi;IEEE Trans Electron Devices.,2016

3. Ruthenium metallization for advanced interconnects.;L Wen;2016 IEEE International Interconnect Technology Conference / Advanced Metallization Conference (IITC/AMC).,2016

4. A Multiscale Simulation Study of the Structural Integrity of Damascene Interconnects in Advanced Technology Nodes.;S Mukesh;IEEE Trans Electron Devices.,2023

5. Rationale and challenges for optical interconnects to electronic chips.;D Miller;Proceedings of the IEEE.,2000

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3