A geospatial source selector for federated GeoSPARQL querying

Author:

Troumpoukis AntonisORCID,Konstantopoulos StasinosORCID,Prokopaki-Kostopoulou NefeliORCID

Abstract

Background: Geospatial linked data brings into the scope of the Semantic Web and its technologies, a wealth of datasets that combine semantically-rich descriptions of resources with their geo-location. There are, however, various Semantic Web technologies where technical work is needed in order to achieve the full integration of geospatial data, and federated query processing is one of these technologies. Methods: In this paper, we explore the idea of annotating data sources with a bounding polygon that summarizes the spatial extent of the resources in each data source, and of using such a summary as an (additional) source selection criterion in order to reduce the set of sources that will be tested as potentially holding relevant data. We present our source selection method, and we discuss its correctness and implementation. Results: We evaluate the proposed source selection using three different types of summaries with different degrees of accuracy, against not using geospatial summaries. We use datasets and queries from a practical use case that combines crop-type data with water availability data for food security. The experimental results suggest that more complex summaries lead to slower source selection times, but also to more precise exclusion of unneeded sources. Moreover, we observe the source selection runtime is (partially or fully) recovered by shorter planning and execution runtimes. As a result, the federated sources are not burdened by pointless querying from the federation engine. Conclusions: The evaluation draws on data and queries from the agroenvironmental domain and shows that our source selection method substantially improves the effectiveness of federated GeoSPARQL query processing.

Funder

Horizon 2020 Framework Programme

Publisher

F1000 Research Ltd

Subject

Ocean Engineering,Safety, Risk, Reliability and Quality

Reference41 articles.

1. OGC GeoSPARQL: A geographic query language for RDF data, version 1.0.

2. GeoSPARQL 1.1: Motivations, Details and Applications of the Decadal Update to the Most Important Geospatial LOD Standard.;N Car;ISPRS Int J Geo-Inf.,2022

3. A GeoSPARQL Compliance Benchmark.;M Jovanovik;ISPRS Int J Geo-Inf.,2021

4. Developing GeoSPARQL Applications with Oracle Spatial and Graph;M Perry,2015

5. The Copernicus App Lab project: Easy access to Copernicus data.;K Bereta;Advances in Database Technology - 22nd International Conference on Extending Database Technology.,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3