The autoPET challenge: Towards fully automated lesion segmentation in oncologic PET/CT imaging

Author:

Gatidis Sergios1,Früh Marcel2,Fabritius Matthias3,Gu Sijing3,Nikolaou Konstantin2,Fougère Christian La2,Ye Jin4,He Junjun4,Peng Yige5ORCID,Bi Lei6,Ma Jun7,Wang Bo8,Zhang Jia9,Huang Yukun9,Heiliger Lars10,Marinov Zdravko11ORCID,Stiefelhagen Rainer11,Egger Jan10,Kleesiek Jens12ORCID,Sibille Ludovic13,Xiang Lei13,Bendazolli Simone14,Astaraki Mehdi14,Schölkopf Bernhard15,Ingrisch Michael16ORCID,Cyran Clemens16,Küstner Thomas2

Affiliation:

1. University Hospital Tuebingen

2. University Hospital Tübingen

3. LMU University Hospital

4. Shanghai AI Lab

5. University of Sydney

6. School of Computer Science

7. University of Toronto

8. Peter Munk Cardiac Centre

9. United Imaging Healthcare

10. University Hospital Essen

11. Karlsruhe Institute of Technology

12. Institute for AI in Medicine, University Medicine Essen

13. Subtle Medical

14. KTH Royal Institute of Technology

15. Max Planck Institute for Intelligent Systmes

16. University Hospital, LMU Munich

Abstract

Abstract We describe the results of the autoPET challenge, a biomedical image analysis challenge aimed to motivate and focus research in the field of automated whole-body PET/CT image analysis. The challenge task was the automated segmentation of metabolically active tumor lesions on whole-body FDG-PET/CT. Challenge participants had access to one of the largest publicly available annotated PET/CT data sets for algorithm training. Over 350 teams from all continents registered for the autoPET challenge; the seven best-performing contributions were awarded at the MICCAI annual meeting 2022. Based on the challenge results we conclude that automated tumor lesion segmentation in PET/CT is feasible with high accuracy using state-of-the-art deep learning methods. We observed that algorithm performance in this task may primarily rely on the quality and quantity of input data and less on technical details of the underlying deep learning architecture. Future iterations of the autoPET challenge will focus on clinical translation.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3