A comparison of methods for fully automatic segmentation of tumors and involved nodes in PET/CT of head and neck cancers

Author:

Groendahl Aurora RosvollORCID,Skjei Knudtsen IngeridORCID,Huynh Bao NgocORCID,Mulstad MartineORCID,Moe Yngve MardalORCID,Knuth FranziskaORCID,Tomic OliverORCID,Indahl Ulf GeirORCID,Torheim TuridORCID,Dale EinarORCID,Malinen EirikORCID,Futsaether Cecilia MarieORCID

Abstract

Abstract Target volume delineation is a vital but time-consuming and challenging part of radiotherapy, where the goal is to deliver sufficient dose to the target while reducing risks of side effects. For head and neck cancer (HNC) this is complicated by the complex anatomy of the head and neck region and the proximity of target volumes to organs at risk. The purpose of this study was to compare and evaluate conventional PET thresholding methods, six classical machine learning algorithms and a 2D U-Net convolutional neural network (CNN) for automatic gross tumor volume (GTV) segmentation of HNC in PET/CT images. For the latter two approaches the impact of single versus multimodality input on segmentation quality was also assessed. 197 patients were included in the study. The cohort was split into training and test sets (157 and 40 patients, respectively). Five-fold cross-validation was used on the training set for model comparison and selection. Manual GTV delineations represented the ground truth. Tresholding, classical machine learning and CNN segmentation models were ranked separately according to the cross-validation Sørensen–Dice similarity coefficient (Dice). PET thresholding gave a maximum mean Dice of 0.62, whereas classical machine learning resulted in maximum mean Dice scores of 0.24 (CT) and 0.66 (PET; PET/CT). CNN models obtained maximum mean Dice scores of 0.66 (CT), 0.68 (PET) and 0.74 (PET/CT). The difference in cross-validation Dice between multimodality PET/CT and single modality CNN models was significant (p ≤ 0.0001). The top-ranked PET/CT-based CNN model outperformed the best-performing thresholding and classical machine learning models, giving significantly better segmentations in terms of cross-validation and test set Dice, true positive rate, positive predictive value and surface distance-based metrics (p ≤ 0.0001). Thus, deep learning based on multimodality PET/CT input resulted in superior target coverage and less inclusion of surrounding normal tissue.

Funder

Kreftforeningen

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Reference54 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3