Comparison of 11 automated PET segmentation methods in lymphoma

Author:

Weisman Amy JORCID,Kieler Minnie W,Perlman ScottORCID,Hutchings MartinORCID,Jeraj Robert,Kostakoglu Lale,Bradshaw Tyler JORCID

Abstract

Abstract Segmentation of lymphoma lesions in FDG PET/CT images is critical in both assessing individual lesions and quantifying patient disease burden. Simple thresholding methods remain common despite the large heterogeneity in lymphoma lesion location, size, and contrast. Here, we assess 11 automated PET segmentation methods for their use in two scenarios: individual lesion segmentation and patient-level disease quantification in lymphoma. Lesions on 18F-FDG PET/CT scans of 90 lymphoma patients were contoured by a nuclear medicine physician. Thresholding, active contours, clustering, adaptive region-growing, and convolutional neural network (CNN) methods were implemented on all physician-identified lesions. Lesion-level segmentation was evaluated using multiple segmentation performance metrics (Dice, Hausdorff Distance). Patient-level quantification of total disease burden (SUVtotal) and metabolic tumor volume (MTV) was assessed using Spearman’s correlation coefficients between the segmentation output and physician contours. Lesion segmentation and patient quantification performance was compared to inter-physician agreement in a subset of 20 patients segmented by a second nuclear medicine physician. In total, 1223 lesions with median tumor-to-background ratio of 4.0 and volume of 1.8 cm3, were evaluated. When assessed for lesion segmentation, a 3D CNN, DeepMedic, achieved the highest performance across all evaluation metrics. DeepMedic, clustering methods, and an iterative threshold method had lesion-level segmentation performance comparable to the degree of inter-physician agreement. For patient-level SUVtotal and MTV quantification, all methods except 40% and 50% SUVmax and adaptive region-growing achieved a performance that was similar the agreement of the two physicians. Multiple methods, including a 3D CNN, clustering, and an iterative threshold method, achieved both good lesion-level segmentation and patient-level quantification performance in a population of 90 lymphoma patients. These methods are thus recommended over thresholding methods such as 40% and 50% SUVmax, which were consistently found to be significantly outside the limits defined by inter-physician agreement.

Funder

GE Healthcare

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3