Hydrogen diffusion and its electrical properties variation as a function of the IGZO stacking structure

Author:

Noh Hee Yeon1,Lee Woo-Geun2,R. Haripriya G.1,Cha Jung-Hwa1,Kim June-Seo1,Yun Won Seok1,Lee Myoung-Jae1,Lee Hyeon-Jun1

Affiliation:

1. Daegu Gyeongbuk Institute of Science and Technology (DGIST)

2. Samsung Display

Abstract

Abstract The oxygen vacancies and hydrogen in oxide semiconductors are regarded as the primary sources of charge carriers and various studies have investigated the effect of hydrogen on the properties of oxide semiconductors. However, the carrier generation mechanism between hydrogen and oxygen vacancies in an a-IGZO semiconductor has not yet been clearly examined. In this study we investigated the effect of hydrogen and the variation mechanisms of electrical properties of a thin film supplied with hydrogen from the passivation layer. SiOx and SiNx, which are used as passivation or gate insulator layers in the semiconductor process, respectively, were placed on the top or bottom of an a-IGZO semiconductor to determine the amount of hydrogen penetrating the a-IGZO active layer. The hydrogen diffusion depth was sufficiently deep to affect the entire thin semiconductor layer. A large amount of hydrogen in SiNx directly affects the electrical resistivity of a-IGZO semiconductor, whereas in SiOx, it induces a different behavior from that in SiNx, such as inducing an oxygen reaction and O-H bond behavior change at the interface of an a-IGZO semiconductor. Moreover, the change in electrical resistivity owing to the contribution of free electrons could be varied based on the bonding method of hydrogen and oxygen.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3