Antibacterial peptide PMAP-37(F34-R), expressed in Pichia pastoris, is effective against pathogenic bacteria and preserves plums

Author:

Dong Chunming1,Xu Lijun1,Lu Weitao1,Li Mengru1,Zhang Rui1,Liu Jian2,Sun Yanyan3,Chu Xinlei4

Affiliation:

1. Tianjin University of Science and Technology

2. Heze University

3. Jinan Deheng Medical Technology Co., Ltd

4. Tianjin Medical University Cancer Institute and Hospital

Abstract

Abstract Background Recently, researchers have focused on the search for alternatives to conventional antibiotics. Antimicrobial peptides are small bioactive peptides that regulate immune activation and have antibacterial activity with a reduced risk of bacterial resistance. Porcine myeloid antibacterial peptide 37 (PMAP-37) is a small-molecule peptide with broad-spectrum antibacterial activity isolated from pig bone marrow, and PMAP-37(F34-R) is its analogue. In this study, PMAP-37(F34-R) was recombinantly expressed in Pichia pastoris, and the recombinant peptide was further investigated for its antibacterial properties, mechanism and preservative in plums.Results To obtain a Pichia pastoris strain expressing PMAP-37(F34-R), we constructed a plasmid expressing recombinant PMAP-37(F34-R) (pPICZα-PMAP-37(F34-R)-A) and introduced it into Pichia pastoris. Finally, we obtained a highly active recombinant peptide, PMAP-37(F34-R), which inhibited the activity of both Gram-positive and Gram-negative bacteria. The minimum inhibitory concentration is 0.12–0.24 µg/mL, and it can destroy the integrity of the cell membrane, leading to cell lysis. It has good stability and is not easily affected by the external environment. Moreover, hemolysis experiments showed that PMAP-37(F34-R) had a low hemolytic ability against mammalian cells. Additionally, PMAP-37(F34-R) showed a good preservative effect in plums. The decay and weight loss rates of the treated samples were significantly lower than those of the control group, and the respiratory intensity of the fruit was delayed in the experimental group.Conclusions In this study, we constructed a recombinant Pichia pastoris strain, which is a promising candidate for extending the shelf life of fruits and has potential applications in the development of new preservatives.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3