Extended cluster-based network modeling for coherent structures in turbulent flows

Author:

Colanera Antonio1,Reumschüssel Johann Moritz2,Beuth Jan Paul2,Chiatto Matteo1,de Luca Luigi1,Oberleithner Kilian2

Affiliation:

1. University of Naples Federico II

2. Technical University of Berlin

Abstract

AbstractThis study introduces the Extended Cluster-based Network Modeling (eCNM), a methodology to analyze complex fluid flows. The eCNM focuses on characterizing dynamics within specific subspaces or subsets of variables, providing valuable insights into complex flow phenomena. The effectiveness of the eCNM is demonstrated on a swirl flame in unforced conditions, characterized by a precessing vortex core (PVC), using synchronized data from PIV measurements, UV-images filtered around the OH* chemiluminescence wavelength, featuring the heat release rate distribution, and pressure signals from jet inlet probes.The analysis starts with choosing the distance metric for the coarse-graining process and the number of clusters of the model. This has been pursued by designing a filtered distance metric based on the filtered correlation matrix and minimizing the Bayesian information criterion (BIC) score, balancing the goodness of the fit of a model with its complexity. The standard cluster-based network model on the velocity fluctuations allowed for determining the characteristic frequency of the PVC. The construction of extended cluster centroids of the heat release rate reveals a rotating flame pattern, predominantly localized within regions influenced by PVC's vortices roll-up. Spatial subdomain analysis is carried out, demonstrating the benefits of focusing on specific regions of interest within the fluid system and providing significant computational savings. Furthermore, eCNM allows for the handling of different sampling frequencies among datasets. Leveraging high-resolution pressure measurements as a reference dataset and velocity components as undersampled data, extended cluster centroids for velocity are successfully estimated, even when the velocity sampling frequency is artificially reduced. This study showcases the adaptability and robustness of eCNM as a valuable tool for comprehending and analyzing coherent structures in complex fluid flows.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3