Cavitation Influence on von Kármán Vortex Shedding and Induced Hydrofoil Vibrations

Author:

Ausoni Philippe1,Farhat Mohamed1,Escaler Xavier2,Egusquiza Eduard2,Avellan François1

Affiliation:

1. Laboratory for Hydraulic Machines, EPFL, Ecole polytechnique fédérale de Lausanne, Avenue de Cour 33bis, 1007 Lausanne, Switzerland

2. Center for Industrial Diagnostics, UPC, Universitat Politecnica de Catalunya, Avenidad Diagonal 647, 08028 Barcelona, Spain

Abstract

The present study deals with the shedding process of the von Kármán vortices at the trailing edge of a 2D hydrofoil at high Reynolds number Reh=25×103–65×103. This research focuses mainly on the effects of cavitation and fluid-structure interaction on the mechanism of the vortex generation. The vortex shedding frequency, derived from the flow-induced vibration measurement, is found to follow the Strouhal law provided that no hydrofoil resonance frequencies are excited, i.e., lock-off. For such a regime, the von Kármán vortices exhibit strong spanwise 3D instabilities and the cavitation inception index is linearly dependent on the square root of the Reynolds number. In the case of resonance, the vortex shedding frequency is locked onto the hydrofoil eigenfrequency and the spatial coherence is enhanced with a quasi-2D shape. The measurements of the hydrofoil wall velocity amplitude and phase reveal the first torsion eigenmotion. In this case, the cavitation inception index is found to be significantly increased compared to lock-off conditions. It makes clear that the vortex roll-up is amplified by the phase locked vibrations of the trailing edge. For the cavitation inception index, a new correlation relationship that encompasses the entire range of Reynolds numbers, including both the lock-off and the lock-in cases, is proposed and validated. In contrast to the earlier models, the new correlation takes into account the trailing edge displacement velocity. In addition, it is found that the transverse velocity of the trailing edge increases the vortex strength linearly. This effect is important in the context of the fluid-structure interaction, since it implies that the velocity of the hydrofoil trailing edge increases the fluctuating forces on the body. It is also demonstrated that cavitation developing in the vortex street cannot be considered as a passive agent for the turbulent wake flow. In fact, for fully developed cavitation, the vortex shedding frequency increases up to 15%, which is accompanied by the increase of the vortex advection velocity and reduction of the streamwise vortex spacing. In addition, a significant increase of the vortex-induced vibration level is found at cavitation onset. These effects are addressed and thought to be a result of the increase of the vorticity by cavitation.

Publisher

ASME International

Subject

Mechanical Engineering

Reference23 articles.

1. The Effect of Sound on Vortex Shedding From Cylinders;Blevins;J. Fluid Mech.

2. Flow-Induced Vibrations at Stay Vanes: Experience on Site and CFD Simulations;Lockey;Int. J. Hydropow. Dams

3. Abnormal Noise and Runner Cracks Caused by von Karman Vortex Shedding: A Case Study in Dachaoshan Hydroelectric Project, Proceedings of the 22nd IAHR Symposium on Hydraulic Machinery and Systems;Shi

4. Vortex Formation in the Wake of an Oscillating Cylinder;Williamson;J. Fluids Struct.

5. Wakes of Cylindrical Bluff Bodies at Low Reynolds-Number;Gerrard;Philos. Trans. R. Soc. London, Ser. A

Cited by 108 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3