Multi-Objective Contextual Bandits in Recommendation Systems for Smart Tourism

Author:

Qassimi Sara1,Rakrak Said1

Affiliation:

1. FST, Cadi Ayyad University

Abstract

Abstract

In the context of smart tourism, the utilization of recommender systems is becoming increasingly critical for enhancing the personalization and quality of travel experiences. Tourists often encounter complex decision-making due to information overload, context-aware recommender systems have emerged as a promising solution, leveraging contextual data such as time, weather, and location. However, these systems face the challenge of the complexity of handling dynamic context. Thus, the static nature of these systems can result in a degradation of performance, as they fail to capture the dynamic nature of user behavior and context. Addressing these issues, this paper presents a novel multi-objective contextual multi-armed bandit-based recommender system. This proposal integrates the strengths of contextual bandit algorithms with multi-objective optimization, offering personalized recommendations and learning from user feedback. The multi-objective optimization includes the dual necessities of relevance and fairness in recommendations, ensuring the promotion of a balanced tourism ecosystem. Extensive experiments were carried out on public datasets to evaluate the performance of our proposed approach. Its effectiveness was compared with baseline methods to establish its performance, demonstrating the significance of multi-objective optimization in enhancing personalized recommendations in smart tourism. To evaluate the performance of our proposed algorithm, we conducted experiments using two datasets, a designed dataset that simulates real-world scenarios and TripAdvisor dataset. The study provides a case scenario of implementing this proposed approach in the smart tourism context of Marrakesh, demonstrating its potential to revolutionize the tourist experience in smart cities.

Publisher

Springer Science and Business Media LLC

Reference37 articles.

1. Hao Wang and Xiaowei Chen and Fu Jia and Xiaojuan Cheng (2023) Digital twin-supported smart city: Status, challenges and future research directions. Expert Systems with Applications 217: 119531 https://doi.org/https://doi.org/10.1016/j.eswa.2023.119531, A city can be considered a carrier of multiple sources of data and information that are updated in real time and experiences continuous operation and development. Therefore, a system that can obtain and manage data/information gathered from different physical objects in a city in real time is needed. Digital twin (DT) technology is a virtual representation of an object or system that spans its lifecycle; it is updated from real-time data and uses simulation, machine learning and reasoning to help with decision-making. However, how to apply these features of the DT to better manage smart cities (SCs) has not yet been systematically summarized and analysed. In this study, 202 papers on DT-supported SCs are reviewed, based on which the drivers and challenges of applying DT-supported SCs and the solutions for the challenges were identified. In addition, this study explored the possible outcomes of applying DT-supported technologies in SCs. This study also contributes to the DT-supported SCs for city management research and practice., Digital twin, Smart city, Information management, Data management, Literature review, https://www.sciencedirect.com/science/article/pii/S0957417423000325, 0957-4174

2. Aristea Kontogianni and Efthimios Alepis and Constantinos Patsakis (2022) Promoting smart tourism personalised services via a combination of deep learning techniques. Expert Systems with Applications 187: 115964 https://doi.org/https://doi.org/10.1016/j.eswa.2021.115964, Coronavirus has radically changed the world and our lives in many and various ways. During this crisis, the tourism sector was severely damaged globally, as, within some weeks, popular touristic places worldwide changed from over-tourism to non-tourism destinations. In order to address new challenges in this sector, a novel cloud-based framework is proposed that exploits image labelling through Deep Learning and Neural Network-based Collaborative Filtering models in order to generate personalised recommendations in the context of smart tourism. At the same time, this paper also aims at offering valuable insights regarding Artificial Neural Networks and Matrix Factorisation Neural Networks. Moreover, in this research, the authors demonstrate the architecture/topology of ANN models used to generate predictions regarding tourists ’ preferences, along with experimental results produced during model evaluation and the configuration that resulted in the highest accuracy in predictions., Smart tourism, Deep Neural Networks, Image labelling, Matrix Factorisation pre-trained models, Recommender system, https://www.sciencedirect.com/science/article/pii/S0957417421013154, 0957-4174

3. Si Mohamed Ben Massou (2021) La mise en tourisme dans la smart city le cas de la ville de Marrakech. Cit é et tourisme 1(Num éro 1) https://doi.org/10.21494/ISTE.OP.2023.0927, Le d éveloppement exponentiel des Nouvelles Technologies de l ’Information et de la Communication a facilit é le passage de la ville ordinaire à la smart city, label revendiqu é ces derni ères ann ées par toute une panoplie de territoires de par le monde. La smart city, ou ville intelligente, est une conception d ’une ville qui utilise des infrastructures num ériques de pointe pour r épondre aux besoins de la population locale et des touristes en mati ère de mobilit é, d ’environnement, de gouvernance, de mode de vie, d ’ économie-innovation et de culture- citoyennet é. Cet article vise à étudier la possibilit é de la mise en tourisme dans la smart city avec Marrakech comme étude de cas et d ’analyser le r ôle jou é par l ’ensemble des acteurs priv és et publics dans cette int égration touristique. Comment les acteurs locaux de la destination peuvent envisager cette mise en tourisme et à travers quelle(s) d émarche(s) Afin de r épondre à notre probl ématique, nous avons effectu é dans une premi ère phase, une recherche documentaire dans le but de s ’informer sur les pratiques intelligentes de la ville de Marrakech. Dans une deuxi ème phase, nous avons élabor é une étude qualitative aupr ès de onze acteurs en relation avec notre sujet pour aboutir à quatre pistes-r ésultats de r éflexion dans l ’avenir, à savoir l ’importance du degr é de connectivit é comme un indicateur des synergies possibles, mais aussi de souligner le fait de mettre en avant et d ’inclure un processus cumulatif entre le capital humain, la culture, l ’environnement et la gouvernance urbaine à la fois touristique et administrative., 2976-5897, http://www.openscience.fr/La-mise-en-tourisme-dans-la-smart-city-le-cas-de-la-ville-de-Marrakech

4. Zhao, Xiangyu and Xia, Long and Tang, Jiliang and Yin, Dawei (2019) "Deep reinforcement learning for search, recommendation, and online advertising: a survey" by Xiangyu Zhao, Long Xia, Jiliang Tang, and Dawei Yin with Martin Vesely as coordinator. ACM SIGWEB Newsletter 2019: 1-15 https://doi.org/10.1145/3320496.3320500, 07

5. Brod én, Bj örn and Paraschakis, Dimitris and Nilsson, Bengt and Hammar, Mikael (2019) A Bandit-Based Ensemble Framework for Exploration/Exploitation of Diverse Recommendation Components: An Experimental Study within E-Commerce. The ACM Transactions on Interactive Intelligent Systems 9: 39 https://doi.org/10.1145/3237187, 10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3