Affiliation:
1. Apptus Technologies, Lund, Sweden
2. Malmö University, Sweden
Abstract
This work presents an extension of Thompson Sampling bandit policy for orchestrating the collection of base recommendation algorithms for e-commerce. We focus on the problem of item-to-item recommendations, for which multiple behavioral and attribute-based predictors are provided to an ensemble learner. In addition, we detail the construction of a personalized predictor based on
k
-Nearest Neighbors (
k
NN), with temporal decay capabilities and event weighting. We show how to adapt Thompson Sampling to realistic situations when neither action availability nor reward stationarity is guaranteed. Furthermore, we investigate the effects of priming the sampler with pre-set parameters of reward probability distributions by utilizing the product catalog and/or event history, when such information is available. We report our experimental results based on the analysis of three real-world e-commerce datasets.
Publisher
Association for Computing Machinery (ACM)
Subject
Artificial Intelligence,Human-Computer Interaction
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献