Affiliation:
1. Michigan State University
2. JD.com
Abstract
Search, recommendation, and online advertising are the three most important information-providing mechanisms on the web. These information seeking techniques, satisfying users' information needs by suggesting users personalized objects (information or services) at the appropriate time and place, play a crucial role in mitigating the information overload problem. With recent great advances in deep reinforcement learning (DRL), there have been increasing interests in developing DRL based information seeking techniques. These DRL based techniques have two key advantages - (1) they are able to continuously update information seeking strategies according to users' real-time feedback, and (2) they can maximize the expected cumulative long-term reward from users where reward has different definitions according to information seeking applications such as click-through rate, revenue, user satisfaction and engagement. In this paper, we give an overview of deep reinforcement learning for search, recommendation, and online advertising from methodologies to applications, review representative algorithms, and discuss some appealing research directions.
Publisher
Association for Computing Machinery (ACM)
Reference100 articles.
1. Optimal control of Markov processes with incomplete state information
2. The Nonstochastic Multiarmed Bandit Problem
3. Bellman R. 2013. Dynamic programming. Courier Corporation. Bellman R. 2013. Dynamic programming. Courier Corporation.
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献