Reliability optimization design of intelligent mechanical structure for waste heat recovery

Author:

Feng Xinyu1,Zhu Xijing1,Li Xiangmeng1

Affiliation:

1. School of Mechanical Engineering, North University of China, Taiyuan, China

Abstract

In order to solve the problems of high energy consumption and serious waste of heat energy in the cooling of traditional oil cooler in hydraulic system, the author proposed the reliability optimization design of intelligent mechanical structure for waste heat recovery. The author has built a waste heat recovery test platform for hydraulic system, the influence of electrical load, oil flow rate and working medium flow rate on system operation and energy characteristics is studied. The experimental results show that: under the same working condition, compared with the oil cooler of the same specification, the maximum thermal efficiency of the proposed organic Rankine cycle waste heat recovery system is increased to 2.56%. The expander pressure ratio and system thermal efficiency increase with the increase of electric load and oil flow rate. With the increase of the flow rate of the working medium, the superheat of the working medium at the inlet of the expander decreases significantly, while the heat exchange of the evaporator and the output power of the expander increase. Under the test condition, the maximum heat exchange of evaporator is 4.18 kW, and the maximum output power of expander is 356 W. The energy saving effect of waste heat recovery system of hydraulic system is obtained, and the influence law of operation parameters on system performance is obtained.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3