Thrombosis origin identification of cardioembolism and large artery atherosclerosis by distinct metabolites

Author:

Li Wei,Bai Xuesong,Hao Jiheng,Xu Xin,Lin Feng,Jiang Qunlong,Ding Chunguang,Dai Gaolei,Peng Fangda,Zhang Meng,Feng YaoORCID,Wang Jiyue,Chen Xianyang,Xue Teng,Guo Xiaofan,Fu Zhaolin,Chen Wen-huo,Zhang Liyong,Wang Chaodong,Jiao LiqunORCID

Abstract

BackgroundThe diagnosis of cerebral thrombosis origin is challenging and remains unclear. This study aims to identify thrombosis due to cardioembolism (CE) and large artery atherosclerosis (LAA) from a new perspective of distinct metabolites.MethodsDistinct metabolites between 26 CE and 22 LAA origin thrombi, which were extracted after successful mechanical thrombectomy in patients with acute ischemic stroke in the anterior circulation, were analyzed with a ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) system. Enriched metabolic pathways related to the metabolites were identified. Least absolute shrinkage selection operator regression analyses and a filtering method were used to select potential predictors. Furthermore, four machine learning classifiers, including decision tree, logistic regression, random forest (RF), and k means unsupervised classification model, were used to evaluate the predictive ability of the selected metabolites.ResultsUPLC-QTOF-MS analysis revealed that levels of 88 and 55 metabolites were elevated in LAA and CE thrombi, respectively. Kyoto Encyclopedia of Genes and Genomes analysis revealed a significant difference between the pathways enriched in the two types of thrombi. Six metabolites (diglyceride (DG, 18:3/24:0), DG (22:0/24:0), phytosphingosine, galabiosylceramide (18:1/24:1), triglyceride (15:0/16:1/o–18:0), and glucosylceramide (18:1/24:0)) were finally selected to build a predictive model. The predictive RF model was confirmed to be the best, with a satisfactory stability and prediction capacity (area under the curve=0.889).ConclusionsSix metabolites as potential predictors for distinguishing between cerebral thrombi of CE and LAA origin were identified. The results are useful for understanding the pathogenesis and for secondary stroke prevention.

Funder

National Natural Science Foundation of China

Publisher

BMJ

Subject

Neurology (clinical),General Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3