Basic Concepts and Interfacial Aspects of High-Efficiency III-V Multijunction Solar Cells

Author:

Sağol B. Erol,Seidel Ulf,Szabó Nadine,Schwarzburg Klaus,Hannappel Thomas

Abstract

Among various types of solar cells, MOVPE-grown triple-junction III-V compound semiconductors are today's most efficient photovoltaic devices with conversion efficiencies exceeding 40%. A next-generation multijunction cell with four or more junctions and optimized band gaps is expected to break the present record efficiency surpassing the 50% mark. High band gap material combinations that are lattice matched to GaAs are already well established, but the required low band gap combinations containing a band gap around 1eV are still to be improved. For this purpose, we have developed a low band gap tandem (two-junction) solar cell lattice matched to InP. For the top and bottom subcells InGaAsP (Eg = 1.03 eV) and InGaAs (Eg = 0.73 eV) were utilized, respectively. A new interband tunnel junction was used to connect the subcells, including thin and highly doped layers of n-type InGaAs and p-type GaAsSb. The delicate MOVPE preparation of critical interfaces was monitored with in-situ reflectance anisotropy spectroscopy (RAS). After a contamination-free transfer, the RAS signals were then benchmarked in ultrahigh vacuum (UHV) with surface science techniques like low energy electron diffraction (LEED) and X-ray photoelectron spectroscopy (XPS). XPS measurements revealed that the sharpest InGaAs/GaAsSb interface was achieved when the GaAsSb layer in the tunnel junction of the solar cell was grown on III-rich (2×4)- or (4×2)-reconstructed InGaAs(100) surfaces. The improved interface preparation had a positive impact on the overall performance of the tandem cell, where slightly higher efficiencies were observed for the cells with the III-rich-prepared tunnel junction interfaces.

Publisher

Swiss Chemical Society

Subject

General Medicine,General Chemistry

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3