Integration of Multijunction Absorbers and Catalysts for Efficient Solar‐Driven Artificial Leaf Structures: A Physical and Materials Science Perspective

Author:

Hannappel Thomas1ORCID,Shekarabi Sahar1ORCID,Jaegermann Wolfram2ORCID,Runge Erich3ORCID,Hofmann Jan Philipp2ORCID,van de Krol Roel4ORCID,May Matthias M.5ORCID,Paszuk Agnieszka1ORCID,Hess Franziska6ORCID,Bergmann Arno7ORCID,Bund Andreas8ORCID,Cierpka Christian9ORCID,Dreßler Christian10ORCID,Dionigi Fabio11ORCID,Friedrich Dennis4,Favaro Marco4ORCID,Krischok Stefan12ORCID,Kurniawan Mario8ORCID,Lüdge Kathy13ORCID,Lei Yong14ORCID,Roldán Cuenya Beatriz7ORCID,Schaaf Peter15ORCID,Schmidt‐Grund Rüdiger12ORCID,Schmidt Wolf Gero16ORCID,Strasser Peter11ORCID,Unger Eva17ORCID,Vasquez Montoya Manuel F.17ORCID,Wang Dong15,Zhang Hongbin18

Affiliation:

1. Institute of Physics Fundamentals of Energy Materials Technische Universität Ilmenau Gustav‐Kirchhoff‐Straße 5 98693 Ilmenau Germany

2. Surface Science Laboratory Department of Materials and Earth Sciences Technische Universität Darmstadt Otto‐Berndt‐Straße 3 64287 Darmstadt Germany

3. Institute of Physics Theoretical Physics I Institute of Micro and Nanotechnologies MacroNano Technische Universität Ilmenau Weimarer Straße 25 98693 Ilmenau Germany

4. Institute for Solar Fuels Helmholtz‐Zentrum Berlin für Materialien und Energie GmbH (HZB) Hahn‐Meitner‐Platz 1 14109 Berlin Germany

5. Institute of Physical and Theoretical Chemistry University of Tübingen Auf der Morgenstelle 15 72076 Tübingen Germany

6. Institute of Chemistry Technische Universität Berlin Strasse des 17. Juni 124 10623 Berlin Germany

7. Department of Interface Science Fritz‐Haber‐Institute of the Max‐Planck‐Society 14195 Berlin Germany

8. Electrochemistry and Electroplating Group Technische Universität Ilmenau Gustav‐Kirchhoff‐Straße 6 98693 Ilmenau Germany

9. Institute of Thermodynamics and Fluid Mechanics Technische Universität Ilmenau Am Helmholtzring 1 98693 Ilmenau Germany

10. Institute of Physics Theoretical Solid State Physics Technische Universität Ilmenau Weimarer Straße 32 98693 Ilmenau Germany

11. The Electrochemical Energy Catalysis Materials Science Laboratory Department of Chemistry Chemical Engineering Division Technische Universität Berlin 10623 Berlin Germany

12. Institute of Physics Technical Physics I Institute of Micro and Nanotechnologies MacroNano Technische Universität Ilmenau Weimarer Straße 32 98693 Ilmenau Germany

13. Institute of Physics Theoretical Physics II Technische Universität Ilmenau Weimarer Straße 25 98693 Ilmenau Germany

14. Institute of Physics Applied Nanophysics Technische Universität Ilmenau Unterpörlitzer Straße 38 98693 Ilmenau Germany

15. Institute of Materials Science and Engineering Materials for Electrical Engineering and Electronics Institute of Micro and Nanotechnologies MacroNano Technische Universität Ilmenau Gustav‐Kirchhoff‐Straße 5 98693 Ilmenau Germany

16. Department of Physics Theoretical Materials Physics University of Paderborn 33095 Paderborn Germany

17. Department Solution Processing of Hybrid Materials & Devices Helmholtz‐Zentrum Berlin für Materialien und Energie GmbH Hahn‐Meitner‐Platz 1 14109 Berlin Germany

18. Institute of Materials Science Technische Universität Darmstadt Otto‐Berndt‐Straße 3 64287 Darmstadt Germany

Abstract

Artificial leaves could be the breakthrough technology to overcome the limitations of storage and mobility through the synthesis of chemical fuels from sunlight, which will be an essential component of a sustainable future energy system. However, the realization of efficient solar‐driven artificial leaf structures requires integrated specialized materials such as semiconductor absorbers, catalysts, interfacial passivation, and contact layers. To date, no competitive system has emerged due to a lack of scientific understanding, knowledge‐based design rules, and scalable engineering strategies. Herein, competitive artificial leaf devices for water splitting, focusing on multiabsorber structures to achieve solar‐to‐hydrogen conversion efficiencies exceeding 15%, are discussed. A key challenge is integrating photovoltaic and electrochemical functionalities in a single device. Additionally, optimal electrocatalysts for intermittent operation at photocurrent densities of 10–20 mA cm−2 must be immobilized on the absorbers with specifically designed interfacial passivation and contact layers, so‐called buried junctions. This minimizes voltage and current losses and prevents corrosive side reactions. Key challenges include understanding elementary steps, identifying suitable materials, and developing synthesis and processing techniques for all integrated components. This is crucial for efficient, robust, and scalable devices. Herein, corresponding research efforts to produce green hydrogen with unassisted solar‐driven (photo‐)electrochemical devices are discussed and reported.

Funder

German Research Foundation

Publisher

Wiley

Reference450 articles.

1. Stellungnahme: Künstliche Photosynthese. Forschungsstand Wissenschaftlich‐Technische Herausforderungen Und Perspektiven Acatech – Deutsche Akademie Der Technikwissenschaften E. V. (Federführung); Deutsche Akademie Der Naturforscher Leopoldina E. V. – Nationale Akademie Der Wissenschaften Union Der Deutschen Akademien Der Wissenschaften E. V. München2018.

2. Report of the Basic Energy Sciences Roundtable on Liquid Solar Fuels

3. Perspectives on the photoelectrochemical storage of solar energy

4. Updates on Hydrogen Value Chain: A Strategic Roadmap

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3