Author:
Bapat Aniruddha,Jordan Stephen
Abstract
Physically motivated classical heuristic optimization algorithms such as simulated annealing (SA) treat the objective function as an energy landscape, and allow walkers to escape local minima. It has been argued that quantum properties such as tunneling may give quantum algorithms advantage in finding ground states of vast, rugged cost landscapes. Indeed, the Quantum Adiabatic Algorithm (QAO) and the recent Quantum Approximate Optimization Algorithm (QAOA) have shown promising results on various problem instances that are considered classically hard. Here, building on previous observations from \cite{mcclean2016, Yang2017}, we argue that the type of control strategy used by the optimization algorithm may be crucial to its success. Along with SA, QAO, and QAOA, we define a new, bang-bang version of simulated annealing, BBSA, and study the performance of these algorithms on two well-studied problem instances from the literature. Both classically and quantumly, the successful control strategy is found to be bang-bang, exponentially outperforming the quasistatic analogues on the same instances. Lastly, we construct O(1)-depth QAOA protocols for a class of symmetric cost functions, and provide an accompanying physical picture.
Subject
Computational Theory and Mathematics,General Physics and Astronomy,Mathematical Physics,Nuclear and High Energy Physics,Statistical and Nonlinear Physics,Theoretical Computer Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献