Quantum dynamical Hamiltonian Monte Carlo

Author:

Lockwood Owen12ORCID,Weiss Peter3,Aronshtein Filip3,Verdon Guillaume442

Affiliation:

1. Rensselaer Polytechnic Institute

2. Extropic Corp.

3. Dirac Inc.

4. University of Waterloo

Abstract

One of the open challenges in quantum computing is to find meaningful and practical methods to leverage quantum computation to accelerate classical machine-learning workflows. A ubiquitous problem in machine-learning workflows is sampling from probability distributions that we only have access to via their log probability. To this end, we extend the well-known Hamiltonian Monte Carlo (HMC) method for Markov chain Monte Carlo (MCMC) sampling to leverage quantum computation in a hybrid manner as a proposal function. Our new algorithm, Quantum Dynamical Hamiltonian Monte Carlo (QD-HMC), replaces the classical symplectic integration proposal step with simulations of quantum-coherent continuous-space dynamics on digital or analog quantum computers. We show that QD-HMC maintains key characteristics of HMC, such as maintaining the detailed balanced condition with momentum inversion, while also having the potential for polynomial speedups over its classical counterpart in certain scenarios. As sampling is a core subroutine in many forms of probabilistic inference, and MCMC in continuously parametrized spaces covers a large class of potential applications, this work widens the areas of applicability of quantum devices. Published by the American Physical Society 2024

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3