Switching Time Optimization for Binary Quantum Optimal Control

Author:

Fei Xinyu1ORCID,Brady Lucas2ORCID,Larson Jeffrey3ORCID,Leyffer Sven3ORCID,Shen Siqian1ORCID

Affiliation:

1. University of Michigan, Ann Arbor, United States

2. NASA Ames Quantum Artificial Intelligence Laboratory, Moffett Field, United States

3. Argonne National Laboratory, Lemont, United States

Abstract

Quantum optimal control is a technique for controlling the evolution of a quantum system and has been applied to a wide range of problems in quantum physics. We study a binary quantum control optimization problem, where control decisions are binary-valued and the problem is solved in diverse quantum algorithms. In this paper, we utilize classical optimization and computing techniques to develop an algorithmic framework that sequentially optimizes the number of control switches and the duration of each control interval on a continuous time horizon. Specifically, we first solve the continuous relaxation of the binary control problem based on time discretization and then use a heuristic to obtain a controller sequence with a penalty on the number of switches. Then, we formulate a switching time optimization model and apply sequential least-squares programming with accelerated time-evolution simulation to solve the model. We demonstrate that our computational framework can obtain binary controls with high-quality performance and also reduce computational time via solving a family of quantum control instances in various quantum physics applications.

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3