Correlation between nanopipes formed from screw dislocations during homoepitaxial growth by metal-organic vapor-phase epitaxy and reverse leakage current in vertical p–n diodes on a free-standing GaN substrates

Author:

Usami Shigeyoshi,Tanaka Atsushi,Fukushima Hayata,Ando Yuto,Deki Manato,Nitta Shugo,Honda Yoshio,Amano Hiroshi

Abstract

Abstract We fabricated p−n diodes under different growth pressures on free-standing GaN substrates of the same quality and observed a noteworthy difference in the reverse leakage current. A large reverse leakage current was generated by nanopipes, which were formed from screw dislocations in the homoepitaxial layer. There were two types of screw dislocation observed in this study. The first type already existed in the substrate and the other was newly generated in the epilayer by the coalescence of edge and mixed dislocations. An increase in the growth pressure suppressed the transformation of screw dislocations into nanopipes, which led to a reduction in the reverse leakage current. To reduce the leakage current further, it is necessary to apply growth conditions that do not transform screw dislocation into nanopipes and to use a free-standing substrate without threading dislocations, that become nanopipes.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Physics and Astronomy (miscellaneous),General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3