Reducing the grain density in semipolar (11-22) AlGaN surfaces on m-plane sapphire substrates

Author:

Foronda Humberto Miguel,Graupeter Sarina,Mehnke Frank,Enslin Johannes,Wernicke Tim,Kneissl Michael

Abstract

Abstract The growth mechanisms during metalorganic vapor phase epitaxy (11-22) oriented Al x Ga1-x N with x ∼ 0.80 on m-plane sapphire are studied with the intention of mitigating the expansion of misoriented grains, composed of the (1-10-3) crystal orientation and achieving a flat surface with only the (11-22) orientation. An increase in reactor pressure, metalorganic supply, and V/III ratio led to a decrease in the grain density from 1.0 × 109 cm−2 to 1.5 × 107 cm−2. By comparing different growth regimes, we found that the main factor suppressing the growth of the (1-10-3) orientation and decreasing the grain density in the AlGaN layers is the growth rate, which decreased with increasing reactor pressure, MO supply, and V/III ratio due to increasing pre-reactions in the gas phase. To mitigate pre-reactions even with lower growth rates, growth conditions with higher total flow and lower TMAl flow were chosen, yielding low growth rates of 0.13 μm h−1 and a grain density of 3.0 × 107 cm−2 at an aluminum mole fraction of 84%. To allow the growth of thick LED heterostructures we demonstrated that such a buffer can be overgrown with higher growth rate AlGaN, yielding a low grain density of 1.0 × 106 cm−2 and a smooth morphology with a rms roughness of 2.5 nm by avoiding misoriented crystal propagation during nucleation.

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Physics and Astronomy (miscellaneous),General Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3