Impact of Probabilistic Road Capacity Constraints on the Spatial Distribution of Hurricane Evacuation Shelter Capacities

Author:

Yazici Mustafa Anil1,Ozbay Kaan1

Affiliation:

1. Department of Civil and Environmental Engineering, Rutgers University, 623 Bowser Road, Piscataway, NJ 08854.

Abstract

The focus of this study is on determining the change in capacity requirements and desirable shelter locations as a result of link capacity changes during evacuation. A cell transmission-based system optimal dynamic traffic assignment (SO-DTA) formulation first proposed by Ziliaskopoulos is extended by introducing probabilistic capacity constraints. The p-level efficient points method first proposed by Prékopa is used to deal with probabilistic capacity constraints of the proposed stochastic SO-DTA model. The model captures the probabilistic nature of link capacities that change in response to the impacts of events such as hurricanes and earthquakes that can destroy or damage highway links. First, a simple single-destination example network is studied to show the effectiveness of the proposed model. Then the impact of using stochastic and deterministic link capacities is also analyzed with a simplified multiple-origin, multiple-destination version of the Cape May, New Jersey, network. Desirable shelter locations are evaluated by letting the stochastic SO-DTA model assign flows generating the minimum systemwide travel time. The results indicate that introducing probabilistic link capacities can adjust the overall flow in the network as well as shelter utilization. Thus, if planners consider the predictions of the deterministic model, they may face the risk of not having sufficient food, medicine, and other emergency supplies in shelters. This paper suggests a more realistic approach to evacuation planning to avoid the inefficiencies that created problems after such recent major disasters as Hurricane Katrina and the tsunami in Southeast Asia.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3