Affiliation:
1. Department of Civil and Environmental Engineering, Tickle College of Engineering, University of Tennessee, Knoxville, 322 John D. Tickle Engineering Building, 851 Neyland Drive, Knoxville, TN 37996
Abstract
Traffic incidents, often known as nonrecurring events, impose enormous economic and social costs. Compared with short-duration incidents, large-scale incidents can substantially disrupt traffic flow by blocking lanes on highways for long periods. A careful examination of large-scale traffic incidents and associated factors can assist with actionable large-scale incident management strategies. For such an analysis, a unique and comprehensive 5-year incident database on East Tennessee roadways was assembled to conduct an in-depth investigation of large-scale incidents, especially focusing on operational responses, that is, response and on-scene times by various agencies. Incidents longer than 120 min and blocking at least one lane were considered large scale; the database contained 890 incidents, which was about 0.69% of all reported incidents. Rigorous fixed- and random-parameter, hazard-based duration models were estimated to account for the possibility of unobserved heterogeneity in large-scale incidents. The modeling results reveal significant heterogeneity in associations between operational responses and large-scale incident durations. A 30-min increase in response time for the first, second, and third (or more) highway response units translated to a 2.8%, 1.6%, and 4.2% increase in large-scale incident durations, respectively. In addition, longer response times for towing and highway patrol were significantly associated with longer incident durations. Given large-scale incidents, associated factors included vehicle fire, unscheduled roadwork, weekdays, afternoon peaks, and traffic volume. Notably, the associations were heterogeneous; that is, the direction could be positive in some cases and negative in others. Practical implications of the results for large-scale incident management are discussed.
Subject
Mechanical Engineering,Civil and Structural Engineering
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献