Simulation and Characterization of Wind Impacts on sUAS Flight Performance for Crash Scene Reconstruction

Author:

Chu Tianxing,Starek Michael J.ORCID,Berryhill Jacob,Quiroga Cesar,Pashaei MohammadORCID

Abstract

Small unmanned aircraft systems (sUASs) have emerged as promising platforms for the purpose of crash scene reconstruction through structure-from-motion (SfM) photogrammetry. However, auto crashes tend to occur under adverse weather conditions that usually pose increased risks of sUAS operation in the sky. Wind is a typical environmental factor that can cause adverse weather, and sUAS responses to various wind conditions have been understudied in the past. To bridge this gap, commercial and open source sUAS flight simulation software is employed in this study to analyze the impacts of wind speed, direction, and turbulence on the ability of sUAS to track the pre-planned path and endurance of the flight mission. This simulation uses typical flight capabilities of quadcopter sUAS platforms that have been increasingly used for traffic incident management. Incremental increases in wind speed, direction, and turbulence are conducted. Average 3D error, standard deviation, battery use, and flight time are used as statistical metrics to characterize the wind impacts on flight stability and endurance. Both statistical and visual analytics are performed. Simulation results suggest operating the simulated quadcopter type when wind speed is less than 11 m/s under light to moderate turbulence levels for optimal flight performance in crash scene reconstruction missions, measured in terms of positional accuracy, required flight time, and battery use. Major lessons learned for real-world quadcopter sUAS flight design in windy conditions for crash scene mapping are also documented.

Funder

Texas Department of Transportation

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Reference50 articles.

1. Role of Multiagency Response and On-Scene Times in Large-Scale Traffic Incidents

2. Traffic Accident Investigation (Report No. KTC-93-10);Agent,1993

3. Incident Management using Total Stations;Jacobson,1992

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3