Likelihood and Duration of Flow Breakdown

Author:

Kim Jiwon1,Mahmassani Hani S.1,Dong Jing1

Affiliation:

1. Transportation Center, Department of Civil and Environmental Engineering, Northwestern University, 600 Foster Street, Evanston, IL 60208.

Abstract

The effect of rain on freeway flow breakdown behavior is investigated. Three aspects of flow breakdown are analyzed for rain versus no rain (clear) weather conditions. First, the probability of breakdown occurrence is examined by analyzing the distribution of prebreakdown flow rates observed immediately before the onset of traffic breakdown by using a survival analysis approach. At all study sections, a reduction with pre-breakdown flow rates is observed under rain conditions compared with distributions under no rain and confirms higher breakdown likelihoods at lower flows. Log likelihood ratio tests confirm the statistical significance of differences in the prebreakdown flow rate distribution parameters under rain compared with clear conditions. Second, breakdown duration is examined by estimating a semiparametric Cox proportional hazard model. With a rain event indicator set as an independent variable, the effect of rain on breakdown duration is observed. Rain during a breakdown episode is found to increase its duration, whereas rain before breakdown does not appear to affect duration. Finally, prebreakdown and postbreakdown flow rates are compared. Overall, while a reduction in prebreakdown flow rates is observed because of rain, the flow drop between prebreakdown and postbreakdown is not much different between rain (3.9% to 12.0%) and no rain (7.8% to 12.7%) conditions.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3