Prediction of Freeway Traffic Breakdown Using Artificial Neural Networks

Author:

Zhao Yiming1,Dong-O’Brien Jing1ORCID

Affiliation:

1. Department of Civil, Construction and Environmental Engineering, Iowa State University, Ames, IA 50011, USA

Abstract

Traffic breakdown is the transition of traffic flow from an uncongested state to a congested state. During peak hours, when a large number of on-ramp vehicles merge with mainline traffic, it can cause a significant drop in speed and subsequently lead to traffic breakdown. Therefore, ramp meters have been used to regulate the traffic flow from the ramps to maintain stable traffic flow on the mainline. However, existing traffic breakdown prediction models do not consider on-ramp traffic flow. In this paper, an algorithm based on artificial neural networks (ANN) is developed to predict the probability of a traffic breakdown occurrence on freeway segments with merging traffic, considering temporal and spatial correlations of the traffic conditions from the location of interest, the ramp, and the upstream and downstream segments. The feature selection analysis reveals that the traffic condition of the ramps has a significant impact on the occurrence of traffic breakdown on the mainline. Therefore, the traffic flow characteristics of the on-ramp, along with other significant features, are used to build the ANN model. The proposed ANN algorithm can predict the occurrence of traffic breakdowns on freeway segments with merging traffic with an accuracy of 96%. Furthermore, the model has been deployed at a different location, which yields a predictive accuracy of 97%. In traffic operations, the high probability of the occurrence of a traffic breakdown can be used as a trigger for the ramp meters.

Funder

Dwight David Eisenhower Transportation Fellowship Program (DDETFP) Graduate Fellowship

Iowa Department of Transportation

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3