Modeling of Bus Transit Driver Availability for Effective Emergency Evacuation in Disaster Relief

Author:

Morgul Ender Faruk12,Cavus Ozlem3,Ozbay Kaan12,Iyigun Cem4

Affiliation:

1. Department of Civil and Environmental Engineering, Rutgers Intelligent Transportation Systems Laboratory, Rutgers University, 96 Frelinghuysen Road, Piscataway, NJ 08854.

2. Department of Civil and Urban Engineering, Center for Urban Science and Progress, New York University, 1 Metrotech Center, 19th Floor, Brooklyn, NY 11201.

3. Department of Industrial Engineering, Bilkent University, 06800 Ankara, Turkey.

4. Department of Industrial Engineering, Middle East Technical University, Universiteler Mahallesi, Dumlup #305, Nar Bulvar #305, No. 1, 06800 Çankaya, Ankara, Turkey.

Abstract

Potential evacuees without access to personal automobiles are expected to use transit, especially buses, to reach safer regions. For a transit agency, operation problems to be considered include establishing bus launch areas, positioning the minimum number of required buses, and coordinating transit operators, especially determining whether the number of drivers will be sufficient to cover the number of vehicles (i.e., buses) to be used during the evacuation. It is also highly probable that during an emergency, absenteeism rates for bus drivers might increase. In this study, the authors developed two stochastic models to determine the need for extra drivers during an emergency evacuation and to provide optimal solutions using well-established concepts in mathematical programming. First, the authors reviewed the literature to develop an effective methodology for the development of optimal extraboard management strategies. The authors found that although several recent reports clearly mentioned the problem of not having enough bus drivers during emergency evacuation operations, no analytical study incorporated the optimal extraboard size problem into emergency evacuation operations. Second, two mathematical models are presented in this paper. The aim of the developed models is to fill the gap in the literature for determining optimal extraboard size for transit operations during emergency evacuations. The models are specifically designed to capture risk-averse behavior of decision makers. Finally, these models were tested with hypothetical examples from real-world data from New Jersey. Results show that both models give reasonable extraboard size estimates, and under different conditions, these models are responsive to the changes in cost and quality of service preferences. The results are encouraging in terms of the models' usefulness for real-world applications.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3