Affiliation:
1. Department of Civil Engineering and Applied Mechanics, McGill University, Macdonald Engineering Building, 817 Sherbrooke Street West, Montreal, Quebec H3A 2K6, Canada
Abstract
The average annual daily bicyclists (AADB) measure is commonly used in research and practice as a metric for cycling studies, such as bike ridership analysis, infrastructure planning, and injury risk. It is estimated in one of two ways: by averaging the daily cyclist totals measured throughout the year with a long-term automated bicycle counter, or by using a long-term bicycle counter to extrapolate data from a short-term counting site. Unfortunately, extrapolation of a short-term bicycle counting site can produce inaccurate AADB estimates as a result of different error sources; the range of possible error is highly correlated to several characteristics of the short-term count, such as the counting period, flow intensity, and time of year. This paper proposes a simple method to estimate the quality of a short-term count through a single metric combining five factors associated with the count variation: duration, average demand, time of year, stability, and correlation with the reference count. The method is validated with the use of a relatively large data set of automated bicycle counts. The quality measure, with a range from 0 to 10, is negatively correlated with the absolute relative error (ARE) of the AADB estimation. Results show distinct ARE distributions for different quality measure classes. The average ARE for the lowest quality class is 13.5% compared with an average ARE of 3.0% for the highest quality class. The maximum ARE (95% confidence) is 35% for the lowest quality class compared with 7.5% for the highest quality class.
Subject
Mechanical Engineering,Civil and Structural Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献