Estimating Annual Average Daily Bicyclists

Author:

Nordback Krista1,Marshall Wesley E.2,Janson Bruce N.2,Stolz Elizabeth34

Affiliation:

1. Oregon Transportation Research and Education Consortium, P.O. Box 751, Portland, OR 97207.

2. Department of Civil Engineering, University of Colorado, Denver, P.O. Box 173364, Campus Box 113, Denver, CO 80217-3364.

3. Chaparral Systems Corporation, PMB 746, 369 Montezuma Avenue, Santa Fe, NM 87501.

4. Sprinkle Consulting, 1624 Market Street, Denver, Suite 202, CO 80202.

Abstract

Cities around the United States are investing in bicycle infrastructure, and to secure additional transportation funding, cities are reporting bicycle use and safety improvements. Data on bicyclist traffic volume is necessary for performing safety studies and reporting facility use. Meeting the need for data, available manual bicycle counting programs count cyclists for a few hours per year at designated locations. A key issue in the design of counting programs is determining the timing and frequency of counts needed to obtain a reliable estimate of annual average daily bicyclists (AADB). In particular, in which days of the week, hours of the day, and months of the year should counts be collected? And, most important to program cost, how many hours should be counted? This study used continuous bicycle counts from Boulder, Colorado, to estimate AADB and analyze the estimation errors that would be expected from various bicycle-counting scenarios. AADB average estimation errors were found to range from 15% with 4 weeks of continuous count data to 54% when only 1 h of data was collected per year. The study found that the most cost-effective length for short-term bicycle counts is one full week when automated counting devices specifically calibrated for bicycle counting are used. Seasons with higher bicycle volumes have less variation in bicycle counts and thus more accurate estimates.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference7 articles.

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3