Probabilistic Performance-Related Specifications Methodology Based on Mechanistic–Empirical Pavement Design Guide

Author:

El-Basyouny Mohamed1,Jeong Myung Goo1

Affiliation:

1. Department of Civil, Environmental, and Sustainable Engineering, Arizona State University, P.O. Box 875306, Tempe, AZ 85287-5306.

Abstract

In current construction practice, as-built asphalt concrete acceptance is typically based on several key quality assurance–quality control parameters. These parameters have pay factors that are empirically established by judgment of the pavement community. The pay factor has been used to reward or penalize the contractor for construction quality. These properties are known to influence pavement performance, but the specific effect on performance and project life has been impossible to estimate. Because of this, there is an urgent need to tie deviations of the field production from the specified job mix to performance and pavement life. This research focused on the integration of AASHTO's Mechanistic–Empirical Pavement Design Guide (NCHRP 1-37A and NCHRP 1-40D) with the Simple Performance Test (NCHRP 9-19) to develop a probabilistic quality specification for quality assurance of hot-mix asphalt (HMA) construction. This has been the major objective of NCHRP 9-22. The methodology is based on relating the HMA dynamic modulus, through a closed-form solution, to major pavement distress. A Monte Carlo simulation is run by using the project mix design to predict the as-designed distress and its associated variability. Then the remaining service life of the pavement is predicted from the as-designed distress. Similarly, Monte Carlo simulation is run for the as-built material to estimate the remaining service life. The difference between the as-built and the as-design distress provides the predicted difference in quality of construction from the mix design. The difference is used to calculate the pay factor for each distress. The total pay factor is the sum of the individual distress pay factors. Finally, the initial international roughness index, representing the ride quality pay factor, is added.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference13 articles.

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3