Deformation and Dynamic Load Amplification Trends at Railroad Bridge Approaches

Author:

Mishra Debakanta1,Boler Huseyin2,Tutumluer Erol2,Hou Wenting2,Hyslip James P.3

Affiliation:

1. Department of Civil Engineering, Boise State University, 1910 University Drive, Boise, ID 83725.

2. Department of Civil and Environmental Engineering, University of Illinois at Urbana–Champaign, 205 North Mathews Avenue, Urbana, IL 61801.

3. HyGround Engineering, LLC, 29 Petticoat Hill Road, Williamsburg, MA 01096.

Abstract

Railroad track transitions such as bridge approaches may experience differential movements due to variations in track stiffness; impact loads due to train speed and excessive vibration; ballast settlement from fouling, degradation, or both; tie–ballast contact condition and gap; and settlement of fill, subgrade, and foundation layers. A research study completed recently at the University of Illinois focused on identifying the major causes of this differential movement and implementing suitable rehabilitation measures to mitigate recurrent problems with settlement and geometry. Transient and permanent deformation trends were observed in track substructure layers at two instrumented bridge approaches along the Amtrak Northeast Corridor. Multidepth deflectometer systems installed through crossties successfully recorded both permanent (plastic) and transient deformations of individual track substructure layers. Strain gauges mounted on the rail effectively measured vertical wheel loads applied during train passage and monitored the support conditions under the instrumented crossties. Track settlement (or permanent deformation) data revealed that the ballast layer was the primary source of differential movement contributing to recurrent settlement and geometry problems. Transient layer deformations recorded under train passage were higher in the ballast than in any other substructure layer. Transient displacement and wheel load data were consistently higher at near-bridge locations than at open-track locations. Rail-mounted strain gauges indicated that load amplification levels were significantly higher at near-bridge locations than at open-track locations.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference24 articles.

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3